In collaboration with
Accounting Historians Journal
Accounting Historians Journal

Prior to submitting, we recommend that you run your manuscript through the Paperpal Preflight screening tool, which instantly checks your manuscript, helps you address common errors and omissions and performs a language quality review.

Continue to submission site

Paperpal Preflight provides feedback and suggestions for improvements to your manuscript, but does not guarantee acceptance. Some of the checks performed may only apply to specific article types. Please check the journal's Instructions for Authors for further detail. Should your manuscript be accepted, journal editors may still require significant changes based on journal and style guidelines.

Scroll to learn how Preflight works

Check your manuscript against submission guidelines

Use Paperpal Preflight to confirm that your manuscript meets the requirements of Accounting Historians Journal

Preflight illustration

Evaluation

We use a machine learning model trained on millions of editorial corrections to find potential issues in your manuscript. Once you upload, our software will run the checks found on the right. This checklist is specific to Accounting Historians Journal and is maintained by Accounting Historians Journal editors.

Free

Metadata

Disclosures

Counts

References

Language

Suggestions

For a one-time fee we’ll also suggest fixes for the issues we found. You’ll get a Word file with suggestions as tracked changes, so that you retain complete control over your text.

$29

Your Paperpal-edited Manuscript

John Paperpal, Jane Cactus

Corresponding Author: example@example.com

Abstract

Estimation of learning curves is ubiquitously based on the proportion of correct responses within moving trial windows. TherebyTherefore, it is assumed that the learning performance staysremainsconstant within the moving windows, which may oftennot be the case. In the present study, we demonstrate that this assumption's violations lead to systematic errors in the analysis of learning curves, and. We explore the dependency of these errors on window size, different statistical models, and the learning phase. For reducingTo reduce these errors in the analysis of single subject data, we propose adequate statistical methods for the estimation of learning curves and construction of confidence intervals in a trial by trialtrial-by-trial manner. Applied to data from an avoidance learning experiment with rodents, these methods revealed performance changes happeningoccurring at multiple time scales across training sessions. Our work also shows that the proper assessment of the behavioral dynamics of learning at high temporal resolution can highlight specific learning processes, thus allows to refineallowing the refinement of existing learning concepts. It further disambiguates the interpretation of neurophysiological signal changes recorded during training in relation to learning.

Introduction

Learning, the acquisition of knowledge through experience, manifests as behavioral changes induring the course of training. Learning behavior does relyrelies on a multitude of neural and cognitive processes that act on different spatial and temporal scales [1–3]; however, many of these processes are not experimentally accessible. Therefore, any particular learning experiment is influenced by numerous uncontrolled variables. This entails a certain degree of unaccountable variability of behavior across time within a subject, as well as between subjects [4]. As a consequence, single behavioral responses of individual subjects are difficult to interpret with respect to learning.

Why Preflight?

  • uniqueSellingPoint.iconAlt

    Speeds up the review process

    Around 33% of manuscripts fail initial screening due to technical issues. As submission turnaround times are often lengthy, this can delay publication by several days or even weeks. Skip the unnecessary wait with Preflight.

  • uniqueSellingPoint.iconAlt

    Trusted by 300+ journals

    Preflight is used by more than 20,000 authors submitting to more than 300 journals across academic disciplines and spanning the portfolio of top global publishers.

  • uniqueSellingPoint.iconAlt

    Powered by machine learning

    We use cutting-edge machine learning trained on millions of academic manuscripts to provide suggestions for improvements on par with those provided by a human editor.

  • uniqueSellingPoint.iconAlt

    Secure & encrypted

    We adhere to the highest standards of data security. Uploaded manuscripts are stored on an encrypted server and are automatically deleted after 90 days.

Paperpal
Developed by CACTUS

©2002-2022
Cactus Communications.
All Rights Reserved.

Location

Cactus Communications
Services Pte Ltd
20 McCallum Street, #19-01,
Tokio Marine Centre,
Singapore 069046

Preflight version

v2.36.1